Does dominance of crossing retinal ganglion cells make the eyes cross? The temporal retina in the origin of infantile esotropia – a neuroanatomical and evolutionary analysis
نویسنده
چکیده
A closer look at the evolution of the eye and the brain provides a possible explanation for both the origin of infantile esotropia and its motor characteristics. In the course of evolution, the eyes have moved from a lateral to a frontal position. Consequently, the monocular visual fields started to overlap resulting in a binocular visual field. In lateral-eyed animals, the retinae project to the contralateral visual cortices only. These projections are also found in binocular mammals and birds with binocular visual fields but in addition there are uncrossed projections from the temporal retinae to the visual cortex. The partial chiasmal decussation and the corpus callosum provide the necessary structure that allows binocular vision to develop. Disruption of normal binocular development causes a loss of binocularity in the primary visual cortex and beyond. Beyond the primary visual cortex, the contralateral eye dominates while the temporal retinal signal appears to lose influence. Loss or absence of binocular vision in infantile esotropia may be caused by inadequate retinotopic matching between the nasal and temporal retinal signals like in albinism with an abnormal or asymmetric chiasmal decussation or agenesis of the corpus callosum. Dominance of the crossing retinal signal might also explain the motor characteristics of infantile esotropia (asymmetric OKN, latent nystagmus, DVD). A normal binocular cortical signal will predominate over the evolutionary older, originally non-binocular, retinal projections to the superior colliculi (CS) and the accessory optic system (AOS). A suppressed temporal retinal signal paves the way for the re-emergence of eye movements driven by one eye, as in lateral-eyed non-binocular animals.
منابع مشابه
Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملGestational diabetes influences retinal Muller cells in rat's offspring
Objective(s): The Muller cell is the principal glial cell of the vertebrate retina. The expression of Glial fibrillary acidic protein (GFAP) in the Muller cells was used as a cellular marker for retinal damage. This study was done to evaluate the effect of gestational diabetes on retinal Muller cells in rat's offspring. Materials and Methods: In this experimental study, 12 Wistar rat dams were ...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملStem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 92 شماره
صفحات -
تاریخ انتشار 2014